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Abstract

The need for improved materials in high temperature structural

applications has stimulated research into the mechanical behavior of a

number of materials including the refractory hard metals.	 The transition

metal carbides are of particular interest for a number of reasons, for
3	

'example;	 (a) these compounds include the matarials having the highest

melting points, (b) they are extremely strong, and (c) they deform plasti-

cally in a manner similar to fcc metals. 	 The purpose of this paper is to

review the present understanding - or lack of it - of the deformation pro-

cess and the factors affecting the mechanical behavior of these technologi-

cally important materials.	 Consequently, the more interpretable information

than thatobtained in recent years from studies of single crystals, rather

from sintered polycrystalline materials, is emphasized.
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1. Introduction.

The refractory carbides include the compounds having the highest
a

known melting temperatures and for this reason much interest iias been

shown in their high temperature mechanical properties. About ten or fifteen

years ago considerable effort was directed towards evaluating their mechani-

cal behavior for structural applications, but the results were disappointing.

The materials were shown to be extremely brittle and very susceptible to

thermal shock failure. In most of this work, however, sintered materials

were used. This may have had a significant influence on the mechanical

behavior since pores provide fracture sources and reduce strength. Conse-

quently, current research is directed towards evaluating the properties of

fully dense carbides using material; produced from the melt. Particular

emphasis is being placed on understanding the factors which determine the

mechanical behavior of these materials so that improvements in their pro-

perties may be made by controlled alloying. Such studies have been con-

siderably enhanced in the last few years by the availability of single

crystals. The purpose of this paper is to summarize some of the recent

results obtained on single crystals, together with the more meaningful

information obtained on polycrystalline carbides, and review the present

understandi:.b of the mechanical behavior of these potentially important

materials.

J
u
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2. Structure of Refractory Carbides.

Phase equilibria in transition metal-carbon systems have been

the subject of several intensive investigations in the last few years.

A detailed discussion of this is beyond the scope ,f this paper, and readers

are referred to the reviews by Schwartzkopf end Kieffer 1 and by Storms 2.

Most of the discussion in this review w;_U be limited to the Group IV and

Group V monocarbides with the B-1, NaCl-type structure, isomorphs of which

incl,ade the hi€t temperature form of WC, UC 4 , PuC, transition metal mono-

nitrides and monoxides, and the corresponding rare earth compote. ds5.

The titanium-carbon phase diagram 2 , Fig. 1, is typical of the

Group IV metal-carbon systems. The TiC phase exhibits a composition range

from about TiCG.6 to TiCG.98• For Group V metal-carbon systems, such as

tantalum-carbon shown in Fig. 2, the phase diagram shows similar features,

but the homogeneity range of the MC carbide is reduced by the presence of

the M 
2 
C carbide. At high temperatures, the M 

2 
C carbide has the L13 hexa-

gonal structure but ordering in the carbon sublattice modifies the struc-

ture to orthorhombic at low temperatures 6 . In both Group IV and V carbide

systems, a eutectic between MC and carbon is formed at higher carbon con-

tents, although there is a disagreement between various investigators con-

cerning the composition and temperature in some systems2'6'7.

Storms 2 indicates that the VC phas: forms by a per i.tectic reaction, but

more recent work6 ' 7 has indicated that the phase diagram is similar to

that of the tantalum-carbon and niobium-carbon systems 2•

r
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Figure 3. The structure of the cubic carbides.
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zIn the MC structures, metal atoms occupy a cubic lattice which

is virtually close-packed, Fig. 3, the metal-metal distance being slightly

y	 greater than that in the pure metal structure - about 3;6 for Group IV car-

bides, and about 9% for Group V carbides. Carbon atoms occupy the octa-

hedral interstices, complete packing of which would result in the composi-

tion MC1.0 , but the phases do not appear to attain this stoir_hiometric

composition. This discrepancy has been attributed to the presence of

oxygen and nitrogen impurities which occupy similar atomic positions to

carbon in these structures 2 . However, such observat_ons as (i) the exis-

tence of the isomorphous compound Ti0 over the composition range Ti00.E
5

to Ti01.258 and ,ii) the upper limit of the VC phase being VC O.89 , sug-

gest that the geometrical arrangements of atoms in the sodium chloride

structure9 is an incomplete explanation for the occurrence of these com-

pounds. From studies of the band structure of VC, Lye 10 has deduced that

the bonding states of the d-band are completely occupied at a composition

ri

	 close to VC0 88, and has suggested that since additional carbon would con-

tribute electrons to anti-bonding d-states, graphite may precipitate at

higher concentrations. Similar consideration- of the electronic structure

of other carbides may exulain the phase limits of these materials also.

A feature common to most of the cubic phases is the occurrence

of a maximum melting-point within the single phase field, e.g. at TiCO 87

(Fig. 1) and TaC0.8z (Fig. 2). This suggests that ordering or compound

formation may be occurring in the solid state.

0
a
r
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Until recently, it was thought that vacancies were randomly
E

distributed in the carbon lattice 	 ordering has been observed in

TiC at low carboy contents
#12

, anu also in VC 13-15 throughout its compo-

sition range. Using X-ray diffraction techniques coupled with the nuclear	 t

mhgnetic resonance studies of Froidevaux and Rossier l3 , de Novion et al. 14
	

F
concluded that h cubic su erlattice was a consequence of carbon vacancyP	 q	 Y

ordering in VC 
0.88 

and suggested that VC O.88 should be described as an

ordered cubic material, V8C7 , with a lattice parameter twice that of the

rocksalt structure. Venables et al. 
15 

have shown that VC C.84 can be con-

sidered as hexagonal VbC S , and suggest that the previously designated cubic

phase field is more correctly described by a series of ordered compounds

V8C7 , V6C 5, etc. In all these structures, vanadium atoms are arranged on
t

a slightly distorted face centered cubic lattice. Since the intensity of

superlattice reflections is much lower than those arising from the cubic

vanadium lattice, recognition by X-ray diffraction has been difficult.

Although extra lines in the VC phase have been reported2 , these have gener-

ally been associated with impurities, and the cubic structure has been

assigned to the complete range of composition.

As mentioned earlier, mononitrides and monoxides of the transi-

tion metals are isomorphous with monocarbides. Complete solid solution

has been reported between these compounds except in cases where the lattice

parameter-. differ by more than about 15% (e.g. VC-ZrC) 1 reminiscent of the

Within the cc-Ti + TiC phase field according to the equilibrium diagram of

Storms2.

#Except in specific discussion of compositions, this designation will be

continued in this review to describe the VC phase.

D
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empirical relationships deduced by Hume-Rothery l` for metallic solid solu-

tions:	 In addition, solid solubility of other carbides in the cubic

carbides has been reported, for example, up to about 20 a/o of

WC is soluble in TiC l • In many of the pseudo-binary systems a maximum

melting-point composition has been reported l . These include TaC-20 a/o HfC

which has the highest reported melting temperature for any material,

4000oC17 . As in the single phase carbides exhibiting similar features,

ordering or compound formation is suggested, but again no evidence for

this has been reported. Recent work, however, indicates that much remains

to be understood about the structure of these pseudo-binary solid solutions.

For example, Venables i8 has observed superlattice reflections and two-phase

structures in allo^, 3 from the previously designated solid solution between

TiC and VC.

3. Mechaniccl Behavior of Group IV Carbides.

3.1. Titanium carbide.

3.1.1. Plastic flow in TiC.

Single crystals of TiC stressed below about WO 0C appear to be

completely brittle 19  although some evidence for dislocation motion at room

temperature has been obtained. Surface markings consistent with slip on

{111} planes have been observed close to Knoop microhardness indentations 20

and close to friction tracks 21 . Moreover, Williams 20 has also shown that

microhardness is dependent on the orientation of the indenter i• l ith respect

to the active slip planes in TiC. The fracture strength is very dependent
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upon surface condition 19 , the maximum reported value being 800,000 p.s•i.

Failure occurs by cleavage on (100) planes, and is initiated at surface

or internal defects, although the possibility that microcracks are pro-

duced by dislocation interactions cannot be completely eliminated.

Plastic deformation occurs readily at testing temperatures

above 800°-900°C•	 Slip lines corresponding to deformation on (111) planes

are observed
19,22 '

 and analysis of dislocation Burgers vectors indicate

f a < 110 > slip direction 23 .	 Slip on this system suggests that TiC is more

appropriately considered as a fcc metal rather than a 'rocksalt' struc-

ture ionic compound.

Above the brittle-to-ductile transition temperature, the strength

-} decreases rapidly.	 For example, the critical resolved & ..!ar stress for

Slip T c , in TiC0.95 decreases from about 22 Kg/mm 2 at 9,')0°C. to 2 Kg/mm2

at 1600 0C, Fig. 4.	 This variation with temperature may be described by:

T	 p= A ex	 -BT	 Eq. 3.1

1

c

where A and B are constants. 	 Relationships similar to this have been

observed in other materials, for example MgG 24 and LiF	 but temperature25,

Fit'

dependences of this form have not been related to the physical mechanisms

controlling the strength.

The data can be presented in a manner more conducive to inter-

' pretation if the critical resolved shear stress is considered as a measure

of the stress required to give a critical dislocation velocity.	 Stein and

26Low	 have shown that the temperature dependence of the yield strength ofp	p	 Y	 g

rl
silicon-iron is similar to that of the stress to produce a constant dislocation

i

i

Uj
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Figure 5. The temperature dependence of the yield stress of TiC (after

Williams 22 ). The change in slope - close to 0.475 T m - corres-

ponds to a change in the meciianism controlling the deformation.

The data for TiC 
0-97 

are taken from Hollox and Smallman 23.
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velocity. Chaudhuri et al. 27 indicate that the variation in dislocation

velocity v with temperature in semiconductors has the form:

v a T 
c 
m exp (-U/kT)

where U is the activation energy for dislocation motion, k is Boltzmann's

constant and m is a parameter defining the stress sensitivity. Conse-

quently, for a constant dislocation velocity:

T c m a exp U/kT.

Williams `0 has suggested that such a relationship is appli-

cable to the deformation of TiC. As shown in Fig. 5, there is a change

in slope of this function, for example at about 1150 0C in TiC0.33 , sug-

gesting that there is a change in the mechanism governing the deformation

behavior. Using a value of m measured from the strain rate sensitivity of

the critical resolved shear stress, namely:

T C a ( E )1/m

Williams concluded that the activation energy for flow above the"critical

temperature"is about 3.0 eV. Below this temperature, the activation

energy appears to be dependent on carbon content, and has a range of values

from about 1.7 to 2.3 eV.
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• Ti above plane

• C atoms in plane

t

Figure 6. The slip plane of TiC (after Rowcliffe28).
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Determination of the activation energies for flow from these

relationships is difficult for a number of reasons. For example, the

variation in strength shown in Fig. 4 is in good agreement with that des-

cribed by Eq. 3.1. Consequently, the linear regions in Fig. 5 are approxi-

mations to a curve, and errors may arise in measuring the slopes. More-

over, it is necessary to assume ghat the activation energy is independent

of stress, and that the value of m is independent of temperature. Experi-

mental verifications of the validity of these assumptions have not been

made for TiC.

At presen^, no complete interpretation of these activation

energies is available. The gradual transition between brittleness and an

increasing strain at failure as the testing temperature is raised suggest

that diffusion is important for the thermally activated motion of disloca-

tions, and on this basis, Roweliffe 28 has applied Kronberg°s^9 synchro-

shear process to the deformation behavior of TiC• He points out that

a unit of slip from B1 to B3 , Fig. 6, would require a large lattice expan-

sion normal to the slip plane. If the carbon atom at C 1 can move at the

same time as the titanium atom moves to C l , however, the unit displacement

B1 to B3 can be accomplished by movements of partial dislocations by slip

from B1 to C1 and C, to B3 • ihis motion cannot be described by a single

shear vector and may require the diffusion of carbon atoms into tetra-

hedral or octahedral vacant sites in order that deformation may take place.

n
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If this mechanism is applicable to TiC; then the activation 	 i

energy for dislocation motion should be close to that expected for carbon

diffusion in TiC. The self-diffusion energy for carbon in TiC is not known

with any certainty at present. Many of the reported results have been

obtained on sintered and polycrystalline material, in which case, surface

or grain boundary diffusion may have been an important influence. In layer-

growth experiments, values of 2.7 eV and F.1 eV have been reported for the

activation energy for carbon and titanium diffusion respectively in TiC30'31.

These results do not relate to a specific composition, and are average values

for diffusion through a range of compositions of TiC. More recently, Sarian32

has reported that the activation energy for carbon diffusion in TiC is about

5.0 eV, the results being obtained using accurate radiotracer techniques.

This result is particularly interesting since it is contrary to the pre-

viously held view, confirmed for example in the isomorphous compolznd UC33^

that carbon was likely to have a considerably lower activation energy for

diffusion than titanium, consistent with its smaller size, interstitial posi-

tion, and the presence of a large number of vacancies in its sublattice.

There is, therefore, little correlation between the activation

energies measured from the temperature dependence of the critical resolved

shear stress below the 'critical temperature,' 1.7 -2.3 eV, and those for

self-diffusior of carbon, 2.7 eV30,31 or 5.0 eV32 . One reason for this

may be that a diffusion mechanism within the stress field or core of the

dislocation may have to be considered. Williams 20 has associated the similarity

L

t

_i
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E between the activation energy for the deformation processes in TiC 0-83

i	 above abc.ut 1150 0C, 3.0 eV, with that for 'pipe-diffusion' deduced from

t	 the annealing of dislocation dipoles34 , 3.4 eV.

However, titanium self-diffusion does influence the mechanical

behavior of TiC above about 0.5 Tm• At these temperatures, Keihn and

Kebler35 have shown that the creep rate of TiC is governed by an activa-

tion ener&j of between 5.0 eV and 7.0 eV, and this has been confirmed by

t	 Brizes3o. These values are in fair agreement with the self-diffusion

energy for titanium in TiC measured in layer-growth experiments, 5.1 eV31

and from dislocation loop annealing, 5.25 eV34
• 

As is established for

metals37 , this correlation is consistent with the rate controlling process

in steady state creep being the diffusion of metal vacancies. It is

L -^	 possible, therefore, that the mechanical behavior of TiC above the critical

(- j	 temperatures shown in Fig. 5 is controlled by titanium diffusion. Some

(	 other mechanism, which may involve carbon diffusion may control behavior

I P below 0.5 Tm

3.1.2. Dislocation structures in TiC.

It has been mentioned that the deformation characteristics of

TiC are similar to those of a fcc metF.l. Dislocation strictures are con-

sistent with a high stacking-fault energy similar to that in, for example,

aluminum. Neither fringe contrast nor dissociation of dislocations into

partials has been observed in transmission electron metallography^ 3 although

partial dislocations38 may exist within the width of the dislocation image,
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Fig. 7• Dislocation structures in ,.LC. (a) Early stage of deformation showing el(,;i-
gated dislocat I on loops, (b) annealing of an elongated loop, A, by pipe-
diffusion along dislocation cores, (c) formation of vecancy dislocation loons
on annealing at 13 000C, (d) final annealed structure - a hexagonal disloca-
tion network as observed in fcc metals (after Hollox and 0ivalLmjan23),
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— 100 A39. The observation of elongated dislocation loops (dipoles) in

the earl y stages of deformation) Fig. 7(a), and of cell structures in more

heavily deformed samples, is also consistent with an ease of cross-slip.

The strongly directional atomic bonding in TiC probably accounts for its

"	 high stacking-fault energy, since the hexagonal symmetry of stacking faults

in the fcc structure would require different bond dir ,^etions. An alter-

native explanation relies on the observation that metals with a filled

d-band have a lower stacking-fault energy than those with partially filled

_	 bands0'1. The latter case s applicable to TiC, but no estimate of the

-	 stacking-fault energy has been made on this basis for any material, and the

value of this parameter is not known.

Annealing of plastically-deformed TiC is accompanied by cof,les-

cence of vacancy dislocation loops 23 . The initial stages appear to be

associated with the formation of trails of small loops, Fig. 7(b), pro-

s;	 duced from dislocation dipoles. The fi,al stages involve the formation of

^-^	 a hexagonal network of dislocations,Fig. 7(d),similar to those observed in

(((̂jjj]	 fcc metals.

W'.ien crystals of TiC 
0-97 

are compressed in the cube orienta-

tion, the resolved shear stress for slip is equal on all (111) < 110 > slip

systems, and parabolic hardening is observed (although three stage harder_{ne

may be expected in other orientations when single slip is favored). The dis-

location density p increases linearly with strain e:

^` .	 p = (8.6 x 1010)e/cm2
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and work hardening represented by the variation of flow stress T  with dis-

location density given by:

Tf = T i + k(P)1/2

!:here k is a constant, this behavior 23 being typical of several other materials.

The T i term may be interpreted as the stress required to move a

dislocation in a dislocation-free lattice or the lattice-friction (Peierls)

stress. Despite averaging over many thin foils, there are some errors in

determining the dislocation density in inhomogeneously deformed single

crystals. However, values of T i have been determined 23 and agree closely with

the values of the observed critical resolved shear stress for slip at the

same tempera*_ure. This result suggests that a high lattice friction stress

is the source of the strength of this material.

3.1.3. Effects of carbon-to-metal r atio.

Vacancies have been commonly recognized as a cause of hardening

in crystal lattices. For example, the yield strength of quenched aluminum

is greater than annealed aluminur 42 ' 43 
J. 
and non-stoichiometric Ti0 2-x is

stronger than the stoichiometric composition4 . Both these observations are

explained by interactions between dislocations and isolated or clustered

vacancies 
44,45,45. 

However, in TiC the critical resolved shear stress

for slip at 9C_
0
C decreases linearly from about 22 Kg/mm ` for TiC0.95 to

about 12 Kg/mm2 for TiC0.79
22 , 

Fig. 8. This decrease in strength with

increasing carbon vacancy concentration may be attributed to a decrease in

the r.untribution mEde by carbon atoms to cohesion in TiC• The nature of
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the electronic interactions between constituent atoms in the lattice has been

deduced from studies of the band structure of this material. Lye 47 has shown

that the predominant contribution to the bonding is from covalent metal-metal

bonds, the strength of which increases with carbon content because (i) the

carbon atoms donate electrons to crystal states derived from metal atom wave

functions and increase the number of 3d-electrons available for metal-metal

bonding, and (ii) the presence of carbon atoms in overlap regions of neighbor-

ing metal atom 3d-orbitals introduces a potential that increases the strength

of the metal-metal interactions, Fig. 9. A decrease in the brittle-to-ductile

transition temperature might also be expected as carbon content is reduced,

but such an effect has not been conclusively demonstrated. However, it may

be significant that Williams 22 observed ductile behavior in TiC0.95 at 8000C,

while Hollox and Smallman 23 showed that the transition in TiC0.97 occurred

at about 9000C•

Changes in carbon content do not appear to have any influence on

dislocation structures in TiC, but the annealing kinetics are changed 23.

Dislocation loop densities as a function of isochrcnal annealing temperature

for TiC0.97 and TiC0.88 are shown in Fig. 10. Iniiially, the loop dP:isity

increases due to the break-up of dipoles, but then decreases as these loops

grow and coalesce. The "self-diffusion temperature," TD ,(defined as the

temperature at which loops disappear completely in a fifteen minute anneal),

is about 14000C for TiC0.97' and 1270 0C for TiC0.88• As is observed in

fcc metals,, TD = 0.475 Tm4 !whe re Tm is the absolute meting point) . The

activation energy for the annealing process is 5.25 eV for TiC0.97 and
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4.88 eV for TiC 0.881 
in good agreement with the reported value of the acti-

vation .energy for the diffusion of titanium atoms in TiC, 5.1 eV 31 . It is

significant to note that the "self-diffusion temperatures," 0. 1:75 Tm, are

close to the values of the crit i cal temperatures observed for the change

in the mechanism controlling the strength, supporting the view that deforma-

tion at higher temperatures is influenced by t-4:anium diffusion.

3.2. Zirconium carbide.

Williams 
22 

has shown that ZrC 0.88 
is stronger than all TiC com-

positions between TiC 0-79 and TiC 0.95) and this has been confirmed by Lee

and Haggerty 48 . The latter investigators also measured the strength of

ZrCO.90 as a function of crystal orientation, and induced slip on (111)

< 110 >, (110) < 110 > and (001) < 110 > systems when the crystal orienta-

tion was chosen such that the Sehmid i factor favored slip on these systems.

One surprising observation which has not been explained so far is that the

critical resolved shear stress for slip on (110) < 110 > appears to be

slightly lower than that for slip on (111) < 110 >, Fig. 11.

Many other features of the mechanical behavior of ZrC are similar

to that of TiC. Lee and Haggerty 48 have shown that the stacking-fault energy

is high, and that the steady-state creep rate of single crystal ZrC is

governed by an activation energy of about 4.8 eV. This value is slightly

1lower than that expected for the diffusion of zirco.iium in ZrC (5.7 eV) 3 ,

but is in fair agreement with the hypothesis that metal atom diffusion is

controlling the high temperature deformation process. No information
-	 ^	 3

i
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^?	 on the variation in strength or the brittle-to-ductile transition tempera-

ture with carbon content is available at present.

3.3. Hafnium carbide.

^'	 HfC has been the least investigated of the carbides because of

.

its limited availab.^.iity. 	 For example, nc information on the slip system

or brittle-to-ductile transition temperature has yet been obtained. 	 The

'` work that has been performed has utilized material containing a few percent

3^
of zirconium, so that a comparison of the behavior of this material with

other purer carbides is of limited value. 	 Brizes36 has reported that such

HfC is ductile at about 1600 oC, and that the temperature dependence of the

yield strength has a form different from that of the other Group :N car-

bides, but he believes this may be due to the impurity content. 	 Adams and

^ Beall49 have investigated the pr • °perties of a number of hafnium-carbon

< alloys.	 Their results suggest that microhardness increases with carbon con-

tent in the HfC phase, as observed in TiC.

^+• Mechanical Behavior of Group V Carbides.

4.1.	 Vanadium carbide.

It has been mentioned that "cubic" VC is more correctly des-

cribed as a series of ordered compc,unds l5 although the composition ranges

over which it should be described as a single ordered phase, two coe^cisting

r^
^ S ordered phases, or even a disordered carbide are not known. 	 However, the

mechanical behavior will be markedly affected by carbon content as the

C

^^
^._	 _ _ ._^^
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structural resistance to dislocation motion is altered. In fact, the yield

stret:gtl-, passes through a maximum as carbon content is increased, Fig. 12,

the strength of VCC.84 (VFCS ) being higher tn^^n that of either VC
O.88 

(V8C7)

or VCO_75^• VC0.81^ 
(VACS) and VC0 ^ 88 (V8C 7 ) both exhibit a similar fcrm

for the temperat^zre dependence of their yield strength, Fig. 13. Above the

brittle-to- ductile transition temperatures, the strength appears to be

governed by one thermally activated process. However, two thermally acti-

; t	 vated processes ccntrol the deformation behavior of VC 0 ^ 75, Fig. 13, and so

r	 this material appears to behave in a simile,_ manner to the "disordered"

^	 carbide, TiC•

Consistent with its greater strength, the brittle-to- ductile

±ransition temperature of VC
O.84 (V6C5

) is the highest of the three compost-

(	 tions. Both VC0.84 (^6^5) and VC
O388 

(V8C7) are ordered compounds at 1cw

1	 temperatures. One consequence of ordering in VC0.84 is that crystals exhi-

bit a colored domain pattern when viewed in polarized light, corresponding

to the several possible orientations of the anisotropic supei-lattice within

`''	 the metal lattice l " 51 . Metallographic observations, Fig. 14, suggest that	 '

'	 disordering of the compound occurs at some temperature between 1250°C and
°	

52

(	

1300 C, close to the brittle-to-.iuctile transition temperature	 Disorder-

`	 ing may also be 7 •elated to the onset of ductility at 1100°C in VCO,88'

Volkava et 81. 53 have observed a break at 1120°C in the relationship between

enthalpy and temperature in VCO ^ o2 • This composition is more correctty repre-

son+.ed as VCp , 89
 plus excess graphite, and this break may therefore corres-

pond t,^ an order-disorder transition in the carbide. The precise i •o1e of

ordering in inhibiting dislocation motion, however, has not yet been it;-'•rpreted.
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4.2. Niobium carbide

Of the group V carbides, much less is known about the behavior

of NbC than VC oz • TaC• Williams 22 has shown that single crystals of

NbC0. ^6 exhibit greater strength than either ZrC 0.88 or TiC0 .
95 ^ 

Kelly and

Rowcliffe 5^ nave shown that hot pressed NbC0.95 is stronger than NbC0^^8

of similar density, indicating an increasing strength with carbon conteni

over this composition range between 1500° and 2000 oC• Brizes36 has reported

that the high temperature creep rate is governed by diffusion of the metal

species, consistent with the behavior • of other carbides.

4.3. Tantalw^n carbide.

Except for some measurements of high temperature creep rate36

TaC single crystals have not been studied. However, a considerable emphasis

has begin placed or. studying polycrystalline anu sintered specimens of this

carbide because of its high melting point, which is exceeded only by the less

available carbide HfC. This work is difficult to evaluate and a lack of

specimen characterization may be responsible for the confusion in the litera-

tore.

Some of the properties reported for TaC are shown in Fig. 15.

Santoro55 has shown a maximum in the microhard^.ess and a minimum in the

room temperature rupture strength at about TaC 0 ^ 83 . fie correlated these

trEnds with several other physical properties in the material, notably the

melting point maximum in this phase, Fig. 2. There is no simple explana-

tion for such conflicting mechanical properties, although a microhardness

I
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measurement is probably more meaningful since it implies measurement of

the internal material properties, rather than the properties of the grain

boundaries as in room temperature tensile measurements. However, measure-

ments of the bend strength of TaC at high temperatures by Johansen and

C1ea 
6

ry5 support the tz •end shown by the room temperature tensile measure-

ments 55, although these investigators placed the minimuri strength at about

iaC0 ^ 9 • In addition, they showed that the brittle-to-ductile transition	 {

temperature increased linear?y with inc •^easing carbon content from composi-	
if

tions with the TaC + TaC two-phase field across the '"aC region to the

two-phase TaC + C field. If compositions within the TaC single phase region

only are considered, which would appear more justifiable, t`^-^ these data

indicate a minimum in the transition temperature corresponding exactly	 ^ -

with that of the bending strength•
t

The most recently reported data 57 indicate that the room	 ^ ^

temperature hardness decreased and the creep rate at high temperatures 	 ^

increased with carbon content over the composition range TaC 0 ^ 8 to TaC1.0'

in contrast to the previous resu1ts 55s56 ^ Steinitz 57 suggested that this

decrease in strength with increasing carbon content was due to dislocation-

vacancy interactions.

A11 these investigations have utilized TaC produced either by	 '

hot pressing with 4y6 Co as a binder56 ' 57 or by carburization of Ta wires55.

Although fully dense, and apparently of constant radial composition, the

latter showed a large variation in grain size. It would seem that with

n
n



- 35 -

these specifications, the material lacked metallurgical integrity and that

an examination of the propAr'.ies of TaC single cry. als might help to

evaluate the mechanical behavior of this carbide.

5. Effect of A1lcying Addit?cns on Mechanical B°havior of Carbides.

5.1. Binary carbide alloys•

A very limited amount of work has been performed on binary alloys

between carbides. Several micr^hardness studies have been reported, and

although a ccntrol of metal:metal ratio was maintained, no control of car-

bon content was attempted. This may account for some of the discrepancies

between the results of various ^.nvestigators l '^
-o0

. One result which may

be significant, however, is that s maximum hardness has been observed at

TaC-20°^ :if C, corresponding to the meltin€ point maximum in this system60^

Single crystals of binary carbides have been prepared only

recently51 ;ind studies of -heir mechanical behavior are still at an ear]^y

stage. Preliminary results for some TiC-VC alloys, however, Fig. 15,

are particularly interesting because: (i) the alloys show considerably

higher. strength than the parent carbides; (ii) the temperature dependence

of the yield strength of the VC-^5 a^o TiC and VC-50 a^o TiC compounds

appear to be different in form from that of TiC-25 a^c VC and the pure

carbides; (iii) there is some ev__dence fcr a small amount of ductility

(^ 1°^) at about 1000 oC in V,^,-^5 a^o TiC•

Venab1es 18 has shown that the VC-25 a^o TiC alloys are two-phase,

one of which is ordered. The details of this phase separatic,n are not fu1Ly

understood, but the fine scale precipitation of a hard ordered phase in a
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i
^ J	 "ductile" ,i^dtrix niay °x plain the mechanical behavior of this a11oy18.

s
The result;, ^^FJC! yet to be interpreted, but it is likely that they are

dependent an st^^?c::iometry. This factor and thermal history may signifi-

cantly infl^.^rce ^ ^, E^ mechanical behavior of these alleys.

5.2. Effect ^f. boron on the structure and properties of TiC and VC•

_	 It has been shown that boron significantly increases the strength

^-	 of TiC and VC• For example, Williams 62 observed a tenfold increase in

^ '	 strength at 1b00 oC of TiC crystals after heating them in contact with boron

t
powder at 2000 oC, Fig. 17.	 Similarly, the critical resolved shear stress

of boron-doped VC
O.84 

is about 19 Kg^mm2 (27,000 p.s.i.) compared with

4 C 3 Kg^mm2 (4,200 p.s.i.) in the undoped carbide of the same composition,

Fig. 17 5^.	 In noth of these ct^ses, increased strength has been associated

with the formation of boride precipitates. 	 Williams52 saggested that the

^ precipitates which form on {111} planes of TiC are TiB 2 ^ and this has been

confirmed by Venables^'3 who has also shown that dislocation nodes are impor-

^^ tant in acting as nucleation sites for this precipitation.	 When VC is

r doped with boron by diffusion at 1800°C for 1 hour, precipitates form on

^-' {111} planes in the surface layers, where a high concentration of boron

^^ would be expected, but the plane of precipitation changes to (100} with

increasing distance from the surfaces rig. 1852 .	 The composition of the

precipitates has not been co^iclusively established 	 although the presence

of boron has been demonstrated in both types52 by means ^^f an alpharadio-

64-67
graph technique 	 .	 The identical structures of TiB 2 and VB2 and the similar

n
U
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i	 \^
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^I

^ 111; traces

.^_,

'.1^ -^ : ^ -	 -^ ^.

^^ .	 ^ ^^

Figure 18. A [100} section through s sample of boron-doped VC O. ^. In

the surface layers where a high concentration eP boron is

expected, precipitates form. on (111) planes (b), but the plane

oP precipitation changes to (100} with increasing distance

Prom the surface (c) (after Hollox and ^'enables5^).
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degree of atomic mismatch between these compounds and the parent carbides

therefore suggests that the precipitates on (111) planes of VC are pro-

bably VB2 • It is also reasonable to suggest that the precipitates on

{100} planes are one of the lower borides of ^^anadium, since they appear

in the more boron deficient regions of the sample. In order of increasing

boron content, these boridt.; are: (i) V3B2 (tetragonal, U3 Si 2-type struc-

ture), (ii) VB (orthorhombic CrB type-structure), and (iii) V3 B4 (orthor-

hombic Mn3B4-typ<:-structure) 68 . Consequently a different plane of preci-

pitation may be the result of a change in composition and structure of the 	 t

precipitate, although no crystallographic relationship has been suggested

by considering the atomic arrangAments in these structures. In addition,

more than one phase may precipitate on the same crystallographic plane.

Precipitates having hexagonal structures tend to lie on {lll} 	 planes in

fcc metals, while these with cubic or tetragonal symmetry favor {100}^

since Young's modulus is generally lowest in < 001 > and strain energy

a minimum^'9 .is therefore -^

6. Biscussion.

From the previous sections, it is apparent that comparatively

little work has been performed on well-characterized carbides, and at pre-

sent there is only a limited understanding of the mechanical behavior of 	 '

these R^aterials. Techniques for growing single crystals of these materials	 _

have been dev^loperi only in recent years
61,71-73 , 

Moreover, with the excep-

tion of WC in which the slip system has been determined74-76 , defore^tion

I?	 ^^
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studies have been confined to determining the basic deformation mechanisms

' i	 of cubic carbides. 'I'emperat^zre, carbon-tc-metal ratio, purity, structure

^

	

	 and microstructure all have important effects on th? properties of these

carbides, and their relative behavior with respect to theQ^ variables will

now be discussed.

6.1. Effects of temperature.

At low temperatures, the carbides are hard and brittle, brit

become relatively soft and ductile at high temperatures. Above abour 0.5 Tm,

the crr,:p behavior appears to be governed by metal atom diffusion. Further

work to clarify the nature of the thermally activated mechanisms controlling

dislocation motion between these extremes is clearly necessary. In particu-

E I!^ ^
	 tar, measurement of such parameters as the activation volume and activation

l
energy involved in the flow processes using the methods derived by Conrad

et al. 7i would contribute significantly to an understanding of the mechanical

behavior. Brizes36 has utilized chan^?es in strain rate to mPasur^. the acti-

^,	 vation volume as a function of temperature in a number of carbides. l^lthough

" ^

	

	 these measurements only apply above 0.5 T m, the results are in agreement

with a Peierls mechanisrl ccntr^oliing the strengt2. Activation energies for

F ^	 flow processes are slso very conveniently measured in creep tests37 ' 78 , and

it would be informative if ti:?se c^u1d be performed above and below 0.5 Tm

on the same ca-^bide by one investigator. Correlations of e' rgi?s measured

from the variFtion iti critical resolved shear stress with temperature and

the self-diffusion energies for metal and carbon diffusion in the carbides

f1

^f
^ -	 - -
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must be regarded as tentative until a more definitive interpretation of

dislocation motion is available, and until more acci.u•ate measurements of

the diffusion energies are available, particularly as a function of car-

bon content and temperature in single crystal material.

Temperature is an important parameter when comparing the pro-

perties of the different cubic carbides. Tor example, over the temperature

range 8000-1200 oC, the y^.eld strength of three compositions of VC is higher

than that of TiC of equivalent stoichiometry, yet the room temperature hard-

nesses are consistently lower. These results confirm T^estbrook's 79 observa-	 ^

tion that the microhardness of an unspecified.composition of VC wu;; leas

than that of TiC at room temperature, but greater at 1000°C, Fig. 1y. The

present measurements of high temperature yield strength suggest that a

second cross-over ir. the relative strength or hardness of TiC and VC may	 r,

occur at about 1200°r, Fig. 20, although VC O. p^^ appears to be an exception

to this generalization. Thus, the simple concept that the hardE^r a material

at room temperature the stronger it will be at ,•igh tempera i ^^res canno' he 	 -^

applied.

G11man^ has shown a dependence of microhardness on the elastic

constant c^4 in a group of materials of similar structure. This appears to

be ebeyod in the carbides, the microhardness decreasing with c^ 4 , Table 1.

Quantitative correlations are difficult, since the microhardness is a func-

tion of 1oad 50^ time, environment 8^ and orientation of the indenter :rith res-

pect to the slip planes 20 . The data in Table 1 clearly indicate that room

^^
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MELTING HARDNESS
c44 POINT (^) HIIN

10 12 c^,^n-^_m oC Kg^r,^m2

TiC0 ^91 1.788 (81) > 3000 ti 3600 (36)

ZrC0 ^9^ 1.593 (81) 3300 ^ 2300 (36)

VC^ .84 1.55 (82) 2c5O ti 2000 {50)

TaC
0.99

0. 97 (83) > 3500 ti 1800 (57)

Table 1. Hardness cf refractory carbides as a

function of melticlg point and ;.4^.

(Figures in parentheses are reference

numbers.)

i
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temperature hardness is not related to melting point. The complex varia-

tion shown by the microhardness as a `unction of temperature, Fig. 19,

suggests that the temperature dependence of the elastic constants plays

an important role in deterclining the mechanical behavior of the carbide•.

It is itrt eresting to note that if these correlations are valid, then the

hardness of UC should increase with temperature over the range ^°-300oC.

In this cubic carbide, a positive temperature ecefficient for the elastic

constants85 is ex'zibited over this temperature range.

t,.2. Effect: of carbon-to-metal ratio.

The strength, brittle-to-ductile traaGition temperature, creep

rate, microhardness and other me^charical properties are a function of

carbon content in the carbides, although there is no simple description of

these variations. In non-nrdez^ed carbides, dislocation. motion is opposed

nniy by the high Peierls stress, and hence the strength is related to the

occupancy of the electron states respons:_ble for cohesioi in these materials.

iye 47 has suggested that the bordirg con^ributions from carbon atoms increase

'.he strength of TiC• However, in a different carbide, carbon atoms may con-

tribute elect2•ons to anti-bending sates so that the strength nay decrease

with increasing carbon content. This may aFp1y t^ TaC, although Steinitz57

has suggested that tl'ie dec^sas^^ in strength with increasing carbon content

is a result of dislocation-va;^an^.y interactions. This view may no± be cer-

root since a similar relationship between strength and composition would

also be expected for TiC• Dislocation-vacancy interactions may be more
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'	 important in compounds which contain vacancies in the metal lattice, a par-

ticular example of which is TiO, which can exist over a range of composi-

tion from Ti0 0 ^ 67 to Ti01 ^ X58 and for w:iich anomalous variations in

strength ha ,.-e been observed8o in oxygen-rich compositions. Some recent un-
t_

confirmed results also suggest that TiC and TiN can exist up to 
TiC1.0^6

and TiN1 ^ 0^, respectively87.

The maximum melting point composition ^.:i the MC phase may be

expected to have an important influence on mechanical strength. This fea-

ture may be an indication o= ordering or compound formation at low tem-

peratures, as appears to be the case in VC• The m^^st recently reported phase

diagram? indicates that the maximum melting point in VC occurs close to.

VCOa85 , which suggests that the crdered carbide V5C5 may correspond to the

maximum stability composition. Certainly this carbide has the highest

strength of all the VC car^.^des yet examined, Fig. 13. i-iowever, this corre-

lation does not appear to be general, since the melting point maximum reported

tin TiC d-.es not correspond with any compound formation or ordering and does

ft

	 not appear to influence hardness or strength. Further examination of mechani-

[	 cal behavior, structure and phase equilibria ire the carbides is clearly neces-

sary.

6.3. Effects of additional elements.

The dramatic increase in strength produced by a small aLiount of

boror. in TiC and VC single crystals, Fig. 17, illustrates an important influ-

once of chemical composition on the properties of the carbides. Boren is a

r
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common impurity in these materials and it may not have been as effec-

tively removed from the sintered materiels used in early studies as it

wculd be in, for example, zone refined material `-' 1 . In the presence of

boron, a second phase having a different crystel structure is often formed.

It is difficult to visualize a mechanism by which impurities in solid solu-

tion car. significantly affect the properties of the carbides. This may be

applicable to, for example, solutions of TiN and Ti0 in T9.C, although con-

siderable effects must be expected at appreciable quantities of these

isomorphs• However, the impurity effects may be particularly important in

polycrystalline samples and in sintered materials where equilibrium condi-

tions may n_ot be reached and where grain boundary segregation may occur.

88
(Under hardness indentations, Cadoff °t a1.	 have shown that polyc-vstal-

line TiC containing 45 a^o carbon and 5 a^o oxygen appears more urittle

than pure TiC.)

Controlled ^:1loying with boron can be used to improve high

temperature strength cf the car ides. The observations reported in

Sec^ion ,.2 must be regarded a^ "casual" since no control of precipitate

size to optimize these properties was attempted. However, from transmission

Plectron metallography, Venables `'3 has shown that the boride precipitates

are nucleated at extrinsic dislocation nodes in TiC, Fig. 21, and has sug-

gested that precipitate density and size, aid hence the mechanical strength

may be controlled by varying the dislocation node ders^ty prior to or during

doping. Alterna±ivory, it is possible that precipitate size and distribution

may be controlled by ^uenchii;^ ar^d ag^iag techniques s^_milar to those applied

to aluminum alloys^^.
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Figure 21. ^i'iB2 precipitates nucleated at dislocation nodes. Their dif-

Fraction contras^^s resemble= that of extrinsic stacking

faults (after i7enables63).
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A1loyiug witt y elements irr solid solution may also be applied

to the carbides. In fact, the carbides appear to be a particularly appro-

priate field of study in which to relate electronic stri^.cture to mechani-

cal behavior. I^ye lC has suggested that alloying ma;,- be expected to cirang^

the relative occupancy and the bond strength of the election states which
-^

are responsible for cohesion in the carbides. By appropriate alloying,

therefore, it may be possible to adjust the relative occupancy of bonding

and anti-bonding electronic states such that differences in strength, duc-

tility and brittle-to-ductile transition temperature may be prcduce^.. If

a relatively ductile carbide could be develor by alloying it would be

of extreme technological importance. A thermomechar^_ •al treatment involving

prestrain of a ductile carbide solid solution - perhaps in some forming

process - fcllowed by controlled high te:..perattu•e boron-doping, could pro- 	 _

vide extreme ^jr useful characteristics of mechanical behavior.

Tti1P_ electronic structure of the carbides may be controlled by

alloying in solid solution with other carbides, nitrides or oxides. 	 i^

Although ordering may introduce complications to these studies, a concur-

rent investigation of bot;i electronic and mechanical properties should

provide valuable information on the fundamental properties of these materials.

At present, However, much remains to be learned about phase eq^_rilibria in 	 4

theses systems. Current work suggests that the earlier observations of

complete solid sclubility between carbides, nitrides and oxides may re

invalidated by the application of more sensi^^i^^e experimental techniques to

determine phase equilibria and to generally charac size these materials.

^J
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1
6.u. Crystal structure.

The prESence o grain bounder°es in a crystal imposes a barrier

to slip propagation, and unless each grain conforms to the deformation of

its neighbors; grain boundary separation will occur. Von Mises^ deter-

mined that five independent slip systems were necessary for ductility ir_

polycr ,̂/stalline aggregates. As Groves and Kelly 90 have pointed out, most

ceramic materials do not meet these requirements. The cubic oxide cera-

mics, for example A1g0, deform by slip on (11C} < 110 > systems• The number

^^	 of independent slip systems is two and ductility is not observed in poly-

crystalline material until slip is activated on additional systems91.
;t

Since the predominant slip system # is (J_11} < 110 > in the :ubic carbides,

five independent slip systems are available and ductility in polycrystalline

form is expected at temperatures not far above the brittle-to-ductile tran-

^^	 sition temperature found in single crystals. The hexagonal ;:erbides and

l.j	 other similar ceramics are likely to possess more limited ductility.

Ductility has beon observed in a number of polycrystalline ^r-

-^	 bides. Recently, Ke11y and Rowcliffe^, have shown that hot-pressed TiCC^75,

VC0.61' NbCO ^^, NbC0 ^95, TaC and WC, all behave in a ductile mariner in

bending tests performed at above 0.5-O.ti Tm•

^^	 #Gillies and Lewis92 Kati ^ studied the line broa^'ening which results from
ball milling different carbides, and they conclude that the strain asso-

ciated with TiC, ZrC and VC i.s similar to that observed in fcc metals,

wh^1e that in TaC and NbC is similar to the± found for the alkali halides

and ionic oxides of the same structure.	 This suggests that (110) < 110 >

slip may be important in TaC and NbC.

D
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6.5. Microstructural details.

Optimizing the properties of carbides will require the use of

fully dense materials since the yield strength of ceramics decreases expon-

entially with increasing porosity 93,94 . Porosity gives rise to increased

brittleness since the pores act as crack nuclei at low temperatures and

restrict grain boundary sliding at high temperatures95.

Although the material should be fully dense, it may not be

necessary to restrict the use of carbides to single crystal components,

because these materials should be ductile in polycrystalline form. In

fact, at 1500 	 coarse grained TiC of about 2mm grain size has exhibited

about 30% ductility, and a yield strength about ten times that of single

crystals of the same composition at the same temperature . It is well

known that the yield strengt r and fracture strength of metals and ceramics

increase:; as the grain size decreases. The behavior of TiC is likely to

follow this pattern. In fact, the room temperature modulus of rt;pt l2:•e of

TiC has been shown to increase from about 31 Kg/mm 2 ( L-4,000 p.s.i.) at a

grail size of l2µ to 51 Kg/mm2 (73,000 p.s.i.) when the grain size is 4k96

This data cannot be accurately described by, for example, ^n Orowan-Petch 	 t 1

analysis 
'97 

because of the variation in porosity of intermediate grain sizes.

However, it appears that fine grain, fully-dense, polycrystalline carbides

covl.d provide useful mechanical strengLis and ductility at high temperatures,

and may therefore be of significant technological importance in the future 98
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it may not be the carbides or alloyed carbides of highest melting points

(NbC, TaC, H`C) which will Drove of greatest usefulness in applications

where strength-t a-density ratio _r, an important criterion for their utili-

zation. These carbides are of considerably greater density than TiC,

VC or TiC-VC allays and would therefore be required to be considerably

stronger to exhibit an equivalent strength-to-density ratio.
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